动态规划解析——背包问题.cpp背包问题
现在我们来看一个复杂的问题,讲动态规划必须谈到的背包问题,如果理解了此方法,那么对于同一类型的问题都可以用类似的方法来解决,学算法最重要的是学会举一反三。背包问题分为01背包问题和完全背包问题,背包问题用知乎某答主的话讲就是:一个小偷背了一个背包潜进了金店,包就那么大,他如果保证他背出来所有物品加起来的价值最大。
01背包问题的描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
要说明这个问题,要先了解一下背包问题的状态转换方程: f[i,j] = Max{ f[i-1,j-Wi] Pi( j >= Wi ), f[i-1,j] }
其中:
f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
Pi表示第i件物品的价值。
初学者最不懂的地方可能就是这个状态方程了,i是什么鬼,j又是什么鬼?下面具体来说这个状态方程怎么来的。
之前说过动态规划是考虑递归的思想,要解决这个问题,首先想到解决其子问题。
要从5个中选出若干个装入容量为10的背包,可以分解为,将a物品装入背包,然后从其他四个中选出若干个装入剩余容量为8的袋子,因为a已经占去了2个位置;或者不装a,从其他四个中选出若干个装入容量为10的袋子?这两种做法中,价值最大的就是我们需要的方案。如果选择了第一种方案,那么继续分解,将b物品装入袋子,从其余三个中选出若干个装入剩余容量为6的袋子,或者不装b(也许你更乐意装b),从剩余三个中选出若干个装入剩余容量为8的袋子,选择这两种方案中价值最大的。依次类推,直到五个物品都选择完毕。将其一般化,用i代替a,用j代替10,用数学公式表达出来就是上面那个公式了,是不是觉得已经看懂了这个公式。
上面公式中还有个( j >= Wi ),表示剩余的容量至少要大于该物品的重量,才需要讨论装不装的问题。
既然子问题已经解决,那么自然想到用递归了,我们用递归来实现 .
└── 动态规划解析——背包问题.cpp
0 directories, 1 file
评论